New Diterpenoid Alkaloids from Aconitum liangshanicum

by Zhong-Tang Zhang, Xiao-Yu Liu, Dong-Lin Chen*, and Feng-Peng Wang

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China (phone/fax: +86-28-5501368; e-mail: chendl@scu.edu.cn)

One new C_{19} -diterpenoid alkaloid, named liangshantine (1), and three new C_{20} -diterpenoid alkaloids, liangshansines A-C (2-4, resp.), as well as eight known compounds, were isolated from the roots of *Aconitum liangshanicum*. The structures of these new alkaloids were elucidated by spectroscopic methods.

Introduction. – Diterpenoid alkaloids, with intriguing chemistry and various bioactivities, constitute a large and complicated group of terpenoid alkaloids [1]. A large number of diterpenoid alkaloids have been isolated from species of genera *Aconitum* and *Delphinium*, and are structurally classified as C_{18} -, C_{19} -, and C_{20} -diterpenpoid alkaloids [2].

The genus *Aconitum*, which comprises *ca.* 400 species, is well-known to comprise poisonous and medicinal plants, more than a half of them growing in China [3]. As a part of our continuing phytochemical investigations on this genus [4–6], we have now studied the roots of *Aconitum liangshanicum* W. T. WANG [7], which is native to the southwest area of Sichuan province in China. Consequently, four new diterpenoid alkaloids, including one new C₁₉-diterpeniod alkaloid, named liangshantine (1), and three new C₂₀-diterpenoid alkaloids, liangshansines A - C (2–4, resp.), were obtained. In addition, eight known compounds were also isolated and identified as bullatine B [8], bullatine C [8], denudatine [9], jynosine [10], kirinine A [11], kirinine B [12], lepenine [13], and tongolinine [14]. In this article, we report the isolation and structure determination of the new alkaloids 1-4.

Results and Discussion. – Liangshantine (1), an amorphous powder, has the molecular formula $C_{26}H_{37}NO_7$, as determined by the *pseudo*-molecular ion peak in the HR-ESI-MS experiment (calc. for $[M + H]^+$: 476.2648; found: 476.2642). The IR spectrum indicated the presence of an OH group (3503 cm⁻¹), a C=O group (1740 cm⁻¹), and a C=C bond (1673 cm⁻¹). The ¹H-NMR spectrum (*Table 1*) showed the presence of a typical EtN group (δ (H) 0.98 (t, J = 7.2, 3 H) and 2.39–2.45 (m, 2 H), three MeO groups (δ (H) 3.26, 3.27, 3.38 (3*s*)), an AcO group (δ (H) 2.07 (*s*)), and a characteristic disubstituted C=C bond (δ (H) 6.22, 6.50 (2*d*, J = 10.4)). The ¹³C-NMR and DEPT data (*Table 1*) of **1** demonstrated the presence of five Me, five CH₂, eleven CH, and five quaternary C-atoms. The above-mentioned data revealed that compound **1** was an aconitine-type C₁₉-diterpenoid alkaloid [15]. The three MeO groups could be

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1**. In CDCl₃; δ in ppm, J in Hz.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
C(1)	-	200.6 (s)	H-C(14)	4.90 (t, J = 4.8)	76.8 (<i>d</i>)
H-C(2)	6.22 (d, J = 10.4)	131.7 (d)	$CH_{2}(15)$	$1.97 - 2.02 (m, H_a)$	42.3 (t)
H-C(3)	6.50 (d, J = 10.4)	147.7 (d)		$2.39 - 2.45 (m, H_b)$	
C(4)	-	49.4 (s)	H - C(16)	3.18 (t, J = 8.0)	81.9 (<i>d</i>)
H-C(5)	3.05 (d, J = 6.4)	48.6(d)	H - C(17)	2.46 - 2.50 (m)	60.7(d)
H-C(6)	4.20 (d, J = 6.8)	81.8(d)	$CH_{2}(18)$	3.89, 3.84 (AB, J = 8.4)	72.0(t)
H-C(7)	2.22 - 2.24(m)	53.5 (d)	$CH_{2}(19)$	$2.46 - 2.50 (m, H_a),$	51.3 (t)
C(8)	-	74.6(s)		$2.66 - 2.70 (m, H_b)$	
H-C(9)	2.22 - 2.24 (m)	40.9(d)	CH ₂ (21)	2.39-2.45 (<i>m</i>)	48.5 (t)
H - C(10)	2.66 - 2.70 (m)	36.4(d)	Me(22)	0.98 (t, J = 7.2)	12.9(q)
C(11)	-	50.9 (s)	MeO-C(6)	3.38 (s)	57.9(q)
$CH_{2}(12)$	$1.33 - 1.38 (m, H_a),$	31.1 (t)	AcO-C(14)	2.07 (s)	170.0(s), 20.8(q)
	$2.39 - 2.45 (m, H_b)$		MeO-C(16)	3.26 (s)	56.0(q)
H - C(13)	2.39-2.45 (<i>m</i>)	45.7 (<i>d</i>)	MeO-C(18)	3.27 (s)	59.0 (q)

located at C(6), C(16), and C(18), respectively, according to their HMBCs (*Fig. 1*). The AcO group was placed at C(14), due to the HMBCs from H–C(14) to C(8), C(10), C(16), and the C=O C-atom of the AcO group. The HMBCs observed from H–C(16), H–C(6), H–C(14), and H–C(9) to the quaternary C(8) (δ (C) 74.6, *s*) suggested that the OH group was attached to C(8). In addition, a rare α , β -unsaturated ketone was determined according to the two characteristic H-atoms at δ (H) 6.22, 6.50 (*d*, *J* = 10.4, each 1 H), together with the C-atom signals at δ (C) 131.7 (*d*), δ (C) 147.7 (*d*), and δ (C) 200.6 (*s*). The HMBCs between H–C(3)/C(1), H–C(3)/C(5), H–C(3)/

C(19), H–C(17)/C(1), and H–C(2)/C(11), demonstrated that the C=O group is located at C(1), and the C=C bond between C(2) and C(3). The above evidence strongly suggested the structure of liangshantine as depicted in **1**. The relative configuration of **1** was confirmed by comparing it with the known compound bullatine C (= $(1\alpha,6\alpha,14\alpha,16\beta)$ -14-(acetyloxy)-20-ethyl-6,16,18-trimethoxyaconitane-1,8-diol)[8]. Hence, the structure of **1** was established as ($6\alpha,14\alpha,16\beta$)-14-(acetyloxy)-20-ethyl-8-hydroxy-6,16,18-trimethoxyaconit-2-en-1-one.

Liangshansine A (2) was obtained as a white powder. The molecular formula was established as $C_{22}H_{29}NO_3$, derived from the HR-ESI-MS spectrum (calc. for $[M + H]^+$: 356.2226; found: 356.2213). The ¹³C-NMR (DEPT) data (Table 2) indicated five quaternary C-atoms, and eight CH, seven CH₂, and two Me groups. Coupled with the ¹H-NMR spectrum, a typical exocyclic C=C bond (δ (H) 5.01, 4.94, s, each 1 H), a C=N azomethine (δ (H) 7.17, s), and an AcO group (δ (H) 2.16, s, 3 H) were found. It was evident that compound 2 was a denudatine-type C_{20} -diterpenoid alkaloid [2]. The HMBCs (Fig. 2) from H-C(15) to C(9), C(7), C(12), C(17), and the C=O C-atom of AcO indicated that the AcO group was attached to C(15). The OH group should be positioned at C(11) because of the correlations observed between H-C(11) and C(16), C(8), C(10), and C(13). The correlations from H-C(19) to C(3), C(5), and C(18)showed that the C=N bond was assigned between N and C(19). The coupling constant between H-C(11) with H_{β} -C(9) (J = 9.2 Hz) indicated a 1,2-diaxial relationship, implying that HO-C(11) was α -oriented. The correlations between H-C(15) and H_{β} -C(9) in the NOESY experiment revealed that AcO-C(15) was in α -orientation. Accordingly, the structure of liangshansine A was established as $(11\alpha, 15\alpha)$ -15-(acetyloxy)-11-hydroxydenudat-16-ene.

Fig. 2. Key ¹H,¹H-COSY, HMBC, and NOESY correlations of liangshansine A (2)

	,		· .		-	
	7		s.		4	
	δ(C)	$\delta(H)$	δ(C)	$\delta(H)$	$\delta(C)$	φ(H)
$CH_2(1)$	26.4 (t)	0.80 - 0.89 (m)	23.9 (t)	0.96 (t, J = 12.8)	26.3(t)	$1.12 - 1.32 (m, H_a),$ $1 \leq 9 - 1 60 (m, H_a)$
$CH_2(2)$	20.3 (t)	$0.80 - 0.89 \ (m)$	21.6 (<i>t</i>)	1.31–1.39 (<i>m</i>)	20.5 (t)	1.40 - 1.47 (m, H _a),
$CH_{2}(3)$	34.5 (t)	$1.39 - 1.49 \ (m, H_a),$	41.2 <i>(t)</i>	1.52 - 1.56 (m, H _a),	39.9 (t)	$2.25 - 2.29 \ (m, H_b)$ $1.40 - 1.47 \ (m, H_a),$
		$1.18 - 1.25 \ (m, H_b)$		$1.21 - 1.22 \ (m, H_{\rm b})$		$1.81 - 1.86 \ (m, H_{\rm b})$
C(4)	44.1(s)		35.2(s)		34.0(s)	
H-C(5)	48.7(d)	1.29 - 1.34 (m)	53.8 (d)	1.10 - 1.15 (m)	51.9(d)	1.12 - 1.32 (m)
$CH_2(6)$	24.6 (t)	$1.29 - 1.34 \ (m)$	23.8 (t)	$1.18 - 1.22 \ (m, H_a),$	23.1(t)	$1.12 - 1.32 (m, H_a),$
$H_{-C(7)}$	$(P) \neq LV$	2.00 - 2.11 (m)	135 (4)	$2.00 - 2.70 \ (m, 11_b)$ $2.07 - 2.08 \ (m)$	V1 0 14	$2.01 - 2.00 (m, 11_b)$ 1 81 - 1 86 (m)
$\Gamma(8)$	44.7 (c)	(<i>m</i>) 11:7 - (0:7	(a) (c) + 444 (c)	(111) 0017 - 1017 -	43.3 (c)	
H - C(9)	57.2 (d)	$1.34 \ (d, J = 9.2)$	40.6 (d)	1.63 - 1.70 (m)	43.9(d)	2.23-2.29 (<i>m</i>)
C(10)	45.0(s)		46.2(s)		45.0(s)	
H-C(11) or	71.4(d)	$3.81 \ (d, J = 9.2)$	27.4(t)	$1.31 - 1.39 \ (m, H_a),$	22.8(t)	$1.28-1.32 \ (m, H_{a}),$
$CH_2(11)$	~	~	~	1.77 - 1.83 (m, H ₈)	~	1.73 - 1.78 (m, H _g)
H-C(12)	46.6(d)	2.22-2.27 (<i>m</i>)	40.1 (d)	1.85 - 1.88 (m)	38.7 (d)	1.73 - 1.78 (m)
$CH_2(13)$ or	23.6(t)	$1.53 - 1.64 \ (m, H_a),$	72.2 (d)	$3.94 \; (\mathrm{br.}\; d, J = 10.0)$	71.5 (d)	$4.82 \ (dd, J = 9.2, 2.8)$
H - C(13)		$1.71 - 1.79 \ (m, H_{\rm b})$				
$CH_{2}(14)$	27.3 (t)	$1.39 - 1.49 \ (m, H_a),$	41.9 (<i>t</i>)	$1.18 - 1.22 \ (m, H_a),$	36.4 (t)	$1.36 - 1.38 \ (m, H_a),$
		$1.98-2.04 \ (m, H_{\beta})$		$2.37 - 2.46 \ (m, H_{\beta})$		$2.39-2.47$ (m, H _{β})
H-C(15)	77.1(d)	5.44(s)	$88.1 \ (d)$	4.09(s)	(p) 6.9L	4.18(s)
C(16)	147.3(s)	I	82.9 (s)	I	64.5 (s)	I
$CH_{2}(17)$	110.2 (<i>t</i>)	5.01(s), 4.94(s)	67.4 (t)	$4.05 (AB, J = 11.2, H_a),$ $3.54 (AB, J = 11.2, H_b)$	45.5 (t)	$3.12 (AB, J = 5.2, H_a),$ $2.44 (AB, J = 5.2, H_b)$
Me(18)	21.4(q)	(s) 66.0	27.0(q)	0.70(s)	26.3(q)	0.71(s)
H-C(19) or	(b) (d)	7.17 (s)	(t) (t)	$2.30-2.34 \ (m, H_a),$	59.4 (t)	2.16-2.20 (m, H _a),
$Cn_2(19)$				2.40 (maaen, n _b)		$2.39 - 2.41 (m, \Pi_b)$
H-C(20) MeN	(1.7)	4.29 (s)	(b) < 4.4 (b) $(4.4, (q)$	3.13 (s) 2.24 (s)	72.8(d) $41.8(q)$	3.20 (br. s) 2.44 (s)
AcO-C(13)					170.8 (s), 21.2 (s), 31.2 (s)	2.06(s)
AcO-C(15)	170.6(s), 21.7(q)	2.16 (s)			(b) c:17	

Table 2. ¹H- and ¹³C-NMR Data of Compounds 2-4. In CDCl₃; ô in ppm, J in Hz.

814

Helvetica Chimica Acta – Vol. 93 (2010)

Liangshansine B (3), with a molecular formula $C_{21}H_{33}NO_4$ (according to the HR-ESI-MS (calc. for $[M + H]^+$: 364.2488; found: 364.2477)), was obtained as colorless crystals. The NMR spectra (Table 2) showed 21 C-atoms, which consisted of four quaternary C-atoms, eight CH₂ groups, including one O-bearing CH₂ (δ (C) 67.4 (t)), seven CH, and two Me groups including a characteristic MeN ($\delta(C)$ 44.4 (q)). According to the above-mentioned data, it was concluded that compound 3 was a denudatine-type C₂₀-diterpenoid alkaloid [2]. Four OH groups are present in this molecule based on the NMR data and HR-ESI-MS spectrum, two of which are connected to C(16) (δ (C) 82.9 (s)) and C(17) (δ (C) 67.4 (t)), while the two additional OH groups are located at C(13) (δ (C) 72.2 (d)) and C(15) (δ (C) 88.1 (d)), respectively. All the evidence was detailed in the HMBCs shown in Fig. 3. The relative configuration of liangshansine B was deduced from the NOESY spectrum (Fig. 3). The NOESY correlations observed, $H-C(9)/H_a-C(17)$, $H-C(13)/H_a-C(11)$, and $H-C(15)/H_a-C(15)$ H-C(14), revealed that H-C(13) and H-C(15) are α -oriented, and also HO-C(16) must be α . Therefore, the structure of **3** was elucidated as $(13\beta, 15\beta, 16\alpha)$ -13, 15, 16, 17tetrahydroxy-21-methyldenudatane.

Fig. 3. Key ¹H,¹H-COSY, HMBC, and NOESY correlations of liangshansine B (3)

Liangshansine C (4) was isolated as a white powder, whose molecular formula was established as $C_{23}H_{33}NO_4$ by the HR-ESI-MS data (calc. for $[M + H]^+$: 388.2488; found: 388.2489). Compound 4 exhibited characteristic NMR features of a denudatinetype C₂₀-diterpenoid alkaloid [2] bearing five quaternary C-atoms, seven CH, eight CH₂, and three Me groups (Table 2). Selected ¹H- and ¹³C-NMR resonances of 4 indicated the characteristic pattern of an epoxy group ($\delta(H)$ 3.12, 2.44 (AB, J=5.2); $\delta(C)$ 64.5 (s), 45.5 (t)) instead of a typical exocyclic C=C bond in C₂₀-diterpenoid alkaloids. Comparison of the NMR data of 4 with those of gomandonine-3-O-acetate (5) [16] revealed that they were structurally similar, except for the presence of an additional OH group in the latter. The constitutional formula of 4 was further verified by the analyses of the HMBC and ${}^{1}H$ -COSY spectra (Fig. 4). The relative configuration was supported by the NOESY data shown in Fig. 4. The 16,17-epoxy group was assigned α -orientation, since the epoxy moiety exhibited nearly identical NMR data to those of two known alkaloids bearing a 16,17-epoxy segment, yesoxine [17] and gomandonine [18], whose structures were unambiguously determined by Xray crystallography. Thus, the structure of **4** was deduced as $(13\beta, 15\beta, 16\alpha)$ -13-acetyoxy15-hydroxy-21-methyl-16,17-epoxydenudatane, and was given the trivial name liangshansine C.

Fig. 4. Key ¹H, ¹H-COSY, HMBC, and NOESY correlations of liangshansine C (4)

This research work was financially supported by the *National Natural Science Foundation of China* (No. 30672526 and No. 30873147).

Experimental Part

General. Silica gel H (Qingdao Haiyang Chemical Group Co., P. R. China) were used for column chromatography (CC) and TLC, resp.; the spots were detected by the use of Dragendorff's reagent. Optical rotations: Perkin-Elmer 341 polarimeter. IR Spectra: Nicolet FT-IR 200SXY spectrophotometer; KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR spectra: Varian INOVA400/45 and Bruker Advance600 spectrometer; in CDCl₃ with TMS as internal standard, δ in ppm. HR-MS: VG Auto Spec3000 mass spectrometer.

Plant Material. Aconitum liangshanicum was collected in the Liangshan Mountains of Sichuan Province, China. The plant was authenticated by *W.-J. Zhang* of the Pengzhou County Center of Disease Prevention and Control. A specimen of this plant was deposited with the herbarium of the West China College of Pharmacy, Sichuan University.

Extraction and Isolation. Air-dried roots of *A. liangshanicum* (5.0 kg) were powdered and percolated with 0.05 mol/l HCl (751). The filtrate was alkalized to pH > 10 with 10% aq. NH₃·H₂O and was extracted with AcOEt until the aq. phase contained no more alkaloids. Evaporation of AcOEt gave the crude alkaloids (25.0 g), which were chromatographed on SiO₂ (200 g) columns (petroleum ether (PE)/ acetone 10:1 to 0:1) to give fractions *I* (2.1 g), *II* (3.6 g), *III* (3.1 g), *IV* (0.92 g), *V* (2.2 g), *VI* (1.1 g), and *VII* (3.0 g). Repeated separation of *Frs. I*, *III*, and *VI* over SiO₂ by CC (PE/acetone/Et₂NH 100:7:1 to 100:20:1) afforded **1** (50 mg), **2** (40 mg), and **3** (30 mg). The *Fr. II* was further purified by repeated CC (SiO₂; CHCl₄/MeOH 200:1) to furnish **4** (25 mg).

Liangshantine (=(6α ,1 4α ,1 6β)-20-*Ethyl*-8-*hydroxy*-6,16-*dimethoxy*-4-(*methoxymethyl*)-1-oxoaconit-2-en-14-yl Acetate; **1**). Amorphous powder. [α]₂₀^{∞} = +118.5 (c = 0.6, CHCl₃). IR (KBr): 3503, 2932, 1740, 1673, 1455, 1370, 1241, 1096. ¹H- (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃): *Table 1*. HR-ESI-MS: 476.2642 ([M + H]⁺, C₂₆H₃₈NO^{\ddagger}; calc. 476.2648).

Liangshansine A (=(7β ,11 α ,15 α)-11-Hydroxy-4-methyl-7,20-cycloatida-16,19-dien-15-yl Acetate; **2**). White powder. [α]_D⁰ = +23.6 (c = 0.25, CHCl₃). IR (KBr): 3392, 2925, 1739, 1651, 1458, 1372, 1235, 1058. ¹H- (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃): *Table 2*. HR-ESI-MS: 356.2213 ([M + H]⁺, C₂₂H₃₀NO₃⁺; calc. 356.2226).

816

Liangshansine $B (=(7\beta,13\text{R},15\beta)-4,21$ -*Dimethyl-7,20-cycloatidane-13,15,16,17-tetrol*; **3**). Colorless crystals. $[\alpha]_D^{20} = -79.0 (c = 0.3, \text{MeOH})$. IR (KBr): 3380, 2925, 1456, 1068. ¹H- (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃): *Table 2*. HR-ESI-MS: 364.2477 ($[M + H]^+$, $C_{21}H_{34}NO_4^+$; calc. 364.2488).

Liangshansine C (=(5R,9S,10R,11S,12R,13R,15S,16R,18R)-11-Hydroxy-5,7-dimethylspiro[7-azahexacyclo[7.6.2.2^{10,13}.0^{1,8}.0^{5,16}.0^{10,15}]nonadecane-12,2'-oxiran]-18-yl Acetate; **4**) White powder. $[a]_{20}^{20} =$ -73.7 (c=0.3, CHCl₃). IR (KBr): 3416, 2931, 1730, 1645, 1457, 1375, 1251. ¹H- (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃): Table 2. HR-ESI-MS: 388.2489 ($[M+H]^+$, $C_{23}H_{34}NO_4^+$; calc. 388.2488).

REFERENCES

- [1] Atta-ur-Rahman, M. I. Choudhary, Nat. Prod. Rep. 1999, 16, 619.
- [2] F.-P. Wang, X.-T. Liang, in 'The Alkaloids: Chemistry and Biology', Ed. G. A. Cordell, Elsevier Science, New York, 2002, Vol. 59, p. 1.
- [3] P.-G. Xiao, F.-P. Wang, F. Gao, L.-P. Yan, D.-L. Chen, Y. Liu, Acta Phytotaxon. Sin. 2006, 44, 1.
- [4] H. Yan, D.-L. Chen, X.-X. Jian, F.-P. Wang, Helv. Chim. Acta 2007, 90, 1133.
- [5] F. Gao, Q.-H. Chen, F.-P. Wang, J. Nat. Prod. 2007, 70, 876.
- [6] L. Lin, D.-L. Chen, X.-Y. Liu, Q.-H. Chen, F.-P. Wang, C.-Y. Yang, Nat. Prod. Commun. 2009, 4, 897.
- [7] H. Takayama, F.-E. Wu, H. Eda, K. Oda, N. Aimi, S. I. Sakai, Chem. Pharm. Bull. 1991, 39, 1644.
- [8] D. Uhrin, B. Proksa, J. Zhamiansan, Planta Med. 1991, 57, 390.
- [9] D. H. Chen, W. L. Sung, Acta Pharm. Sin. 1981, 16, 748.
- [10] H. Takayama, A. Tokita, M. Ito, S. Sakai, F. Kurosaki, T. Okamoto, J. Pharm. Soc. Japan 1982, 102, 245.
- [11] F. Feng, J.-H. Liu, J. Chin. Pharm. Sci. 1997, 6, 17.
- [12] L. He, Y.-Z. Chen, L.-S. Ding, B.-G. Li, Chin. Chem. Lett. 1996, 7, 557.
- [13] S. W. Pelletier, Z. Djarmati, J. Am. Chem. Soc. 1976, 98, 2626.
- [14] F. Feng, J.-H. Liu, S.-X. Zhao, Phytochemistry 1998, 49, 2557.
- [15] S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, in 'Alkaloids: Chemical and Biological Perspectives', Ed. S. W. Pelletier, Wiley, New York, 1984, Vol. 2, p. 205.
- [16] P. Kutathaivel, M. H. Benn, Phytochemistry 1988, 27, 3998.
- [17] H. Bando, K. Wada, T. Amiya, K. Kobayashi, Y. Fujimoto, T. Sakurai, Heterocycles 1987, 26, 2623.
- [18] S. Sakai, T. Okazaki, K. Yamaguchi, H. Takayama, N. Aimi, Chem. Pharm. Bull. 1987, 35, 2615.

Received October 26, 2009